$\begin{array}{c} {\rm Math~203~-~Calculus~III} \\ {\rm Quiz~1-~2009} \end{array}$

- 1. Let $\overrightarrow{A}=\langle 3,2,-1\rangle$, $\overrightarrow{B}=\langle -2,0,3\rangle$. Find the unit vector in the direction of of $\overrightarrow{B}\times\overrightarrow{A}$.
- 2. Use cross product to find the angle between the vectors $\overrightarrow{A}=3\mathbf{i}+\mathbf{k}$ and $\overrightarrow{B}=4\mathbf{j}+\mathbf{k}$.
- 3. Find the distance from the point Q=(1,3,1) to the line through (1,3,-2) and (1,0,-2).

Math 203 - Calculus III Quiz 2- 2009

- 1. For the planes x 2y + z = 0 and 2x + 3y 2z = 0
 - (a) Find the angle between them.
 - (b) Find parametric equations of their line of intersection.
- 2. Find the equation of the plane containg the points (2,1,1),(0,4,1), and (-2,1,4).

Math 203 - Calculus III Quiz 3- , 2009

Find the minimum and maximum values of f(x,y)=x+2y subject to the constraint $x^2+y^2=1$

$\begin{array}{c} \mathrm{MTH} \ 203\text{-Quiz} \ 4 \\ 2009 \end{array}$

- 1. Graph the region, switch the integral and compute $\int_0^1 \int_{\sqrt{x}}^1 \frac{3}{4+y^3} dy dx$.
- 2. Set up (don't compute) a double integral for the volume bounded by $z=\sqrt{4-x^2-y^2}$ inside $x^2+y^2=1$ in the first octant.

MTH 203-Quiz 5

1. Compute $\int_R x \, dA$ where R is the annular region lying between $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

2. Find the surface area of the portion bounded by $z=\sqrt{25-x^2-y^2}$ that lies above the region bounded by the circle $x^2+y^2=9$.

MTH 203-Quiz 6, 2009

1. Convert to cylindrical and **compute**: $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x \ dz \ dy \ dx$.

2. Set up a formula (don't compute) for the volume of the solid that lies between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=2$ and inside the cone $z=\sqrt{x^2+y^2}$.

MTH 203-Quiz 7, 2009

1. Evaluate $\int_C (x^2 - y + 3z) \ ds$ where C is the line segment from (0,0,0) to (1,2,1).

- 2. Evaluate $\int_C \ y \ dx + x^2 \ dy$ where C is the parabola $y = 4x x^2$ from (4,0) to (1,3).
- 3. Find the work done by the force field $\mathbf{F}(x,y)=xy\mathbf{i}+y\mathbf{j}$ in moving a particle along the curve $\mathbf{r}(t)=4t\mathbf{i}+t\mathbf{j},\ 0\leq t\leq 1.$

MTH 203-Quiz 8, 2009

1. Use Green's Theorem to evaluate $\int_C y^3 dx + (x^3 + 3xy^2) dy$ where C is the path from (0,0) to (1,1) along the graph $y=x^3$ and from (1,1) along the graph y=x.

2. Use Green's Theorem to find the area of the region bounded by the graphs of y=2x+1 and $y=4-x^2$.